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Abstract. Statisticians are finding their place in the emerging field of data
science. However, many issues considered “new” in data science have long
histories in statistics. Examples of using statistical thinking are illustrated,
which range from exploratory data analysis to measuring uncertainty to ac-
commodating nonrandom samples. These examples are then applied to ser-
vice networks, baseball predictions and official statistics.
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1. INTRODUCTION.

In 2009, Hal Varian, the Chief Economist at Google
quipped, “I keep saying the sexy job in the next 10
years will be statisticians (Varian, 2009).” This state-
ment was quoted often, much to the delight of statisti-
cians (based on anecdotal evidence). By 2012, Harvard
Business Review ran an article titled: “Data Scientist:
The Sexiest Job of the 21st Century (Davenport and
Patil, 2012).”
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Statistics had suddenly been eclipsed by the newly-
minted “data science.” This was not simply an issue of
nomenclature—a la the Gershwins’, “You like tomato
and I like tomatoe. . . (Gershwin and Gershwin, 1937).”
Rather, from the statisticians’ perspective, it was a
question of identity and confidence. At times, it almost
felt as if people were implying you could be a “data
scientist” without ever needing “statistics.”

This question of identity was pervasive enough that
the American Statistical Association felt the need to
issue an official statement on the subject in 2015,
written by a panel of prominent statisticians from
both academia and industry (van Dyk et al., 2015).
“Framing questions statistically allows us to leverage
data resources to extract knowledge and obtain bet-
ter answers,” they wrote. The panel offered examples
from the concept of randomness to correlation versus
causation to quantifying uncertainty. They also noted
that these are all ideas debated in data science today
that statistics—and statisticians—have thought deeply
about for centuries.

In 2018, Statistics and Probability Letters published
a special issue titled: “The Role of Statistics in the
Era of Big Data.” The articles within reiterated the
idea that what seemed like new issues in data science
were already part of the field of statistics. Moreover,
the various authors argued that statistical thinking pro-
vided a suitable framework for solving these problems
(Sangalli, 2018).
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It was—and still is—a time of reckoning for statisti-
cians. Some of data science falls under statistics, some
of it does not. That much is clear. It is not our goal in
this paper to litigate how much prominence statistics
should have in the field of data science or to provide
specific recommendations to advocate for our subject.
Rather, we hope to highlight how current debates in
data science can be cast in terms of statistical thinking.
That is, we hope to show the importance of statistics
by example.

Lawrence D. Brown, to whom this paper is dedi-
cated, was primarily known for his work on theoretical
topics. Emphasizing his theoretical contributions, how-
ever, shortchanges a statistician who had an extraordi-
narily wide set of interests. (Two coauthors of this pa-
per even found that people were surprised that Brown
was their thesis advisor when presenting their applied
dissertation work!) For example, his work in decision
theory and sense of geometry brought a fresh perspec-
tive to applications from call centers to baseball to the
decennial census.

In this paper, we use those research interests as ex-
amples to illustrate the importance of statistical think-
ing in data science. We begin in Section 2, where
a complete framework is proposed for approaching
service network problems. The framework demon-
strates what data science is about: it is to begin with
transaction-level operational data, collected at service
systems such as call centers and hospitals; continue
with data management, data cleaning, visualization
and analysis (in particular Exploratory Data Analysis)
through statistical and graphical engines; and culmi-
nate with a data-based simulation of the service net-
works, jointly with validated operational models (the-
oretical, robust) that support design and management
of the service systems that originated the data. This
framework has its roots in the seminal work of Brown
et al. (2005), which presented the first thorough statis-
tical analysis of transaction-by-transaction service data
from a banking call center, and applied those findings
to support some and dispute other popular operational
models of call centers and their building blocks. One
aspect of further development of the framework in-
cludes providing valid statistical inference after model
selection, based on the pioneering work by Brown’s
group at the University of Pennsylvania (Berk et al.,
2013).

In Section 3, we review and expand Brown (2008)
on predicting batting averages for a baseball player.
Brown applied several well-known classical parametric
methods along with a nonparametric empirical Bayes

addition. These methods, however, generate only point
estimates without uncertainty quantification, a key is-
sue in data science. Cai and Zhao (2019) proposed an
alternative nonparametric empirical Bayes procedure
that provides accurate predictions and quantifies uncer-
tainty using predictive intervals.

We take a more historical perspective in Section 4
with a focus on official statistics in the United States.
Brown served on numerous committees during his life
in an effort to improve statistics produced by federal
agencies. Using examples from the history of the U.S.
federal statistical system, we will discuss three issues
in data science: the effects of repurposing data, data
confidentiality and privacy, and working with nonran-
dom samples. We conclude briefly in Section 5.

2. DATA-BASED SERVICE NETWORKS
(SERVNETS): MODELS IN SUPPORT OF

INFERENCE, ANALYSIS, DESIGN, CONTROL,
PREDICTION AND SIMULATION OF SERVICE

SYSTEMS.

Brown et al. (2005) laid the foundation for a large
body of research within operations research and oper-
ations management, as well as in statistics and more
broadly in data science. Its OR and OM impact can
be appreciated through the survey by Gans, Koole and
Mandelbaum (2003), and over 2400 papers that refer to
both Brown et al. (2005) and to that survey.1 Here, we
describe briefly some of its Statistical siblings, as part
of the future research horizon that Brown et al. (2005)
revealed.

To this end, we start with a description of our world
of practice: service networks. Then we proceed with
laying out a modeling territory for operational models
(empirical, mathematical and simulation), with spe-
cial attention given to two models, Erlang-A (that
motivated Brown et al., 2005) and Erlang-R (a natu-
ral sequel). Each of these two models mathematically
highlights an operationally-significant phenomenon
(Erlang-A: hanging-up while waiting for a phone-
service (Garnett, Mandelbaum and Reiman, 2002), and
Erlang-R: service-cycling while being treated in an
emergency department (Yom-Tov and Mandelbaum,
2014)); and being tractable mathematical models of
real service systems, they are necessarily “simple mod-
els at the service of complex realities.” Now it turns
out that both Erlang models have been successful “ser-
vants” of these realities, and below we provide (a very)

1According to Google Scholar (https://scholar.google.com) as of
October 27, 2019.
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preliminary support of the hope that this success is gen-
eralizable.

We conclude with a paradigm for a future research
horizon: it starts with data from a service system and
its exploratory-data-analysis (EDA); it continues with a
platform for modeling, visualization (of data and mod-
els), and performance- and predictive-analysis; and it
culminates with validated valuable models that sup-
port the design/planning and control/management of
the service system from which the data originated.

There are two prerequisites for the success of our
paradigm. The first is a multidisciplinary research part-
nership between Operations Research and Statistics—
which is precisely the theme of Brown et al. (2005).
The second is operational service-data at the resolu-
tion of the individual customer-server transaction—
Technion’s SEELab (Laboratory for Service Enter-
priser Engineering) is a home for such data, which has
originated in call centers, hospitals, courts, banks and
more. For example, Figures 2 and its corresponding an-
imation are based on such transaction-data from a hos-
pital.

2.1 Service Networks (ServNets).

Our relevant world-of-practice includes telephone
call centers (business and marketing, emergency, help
desks), hospitals (emergency rooms, outpatient clinics,
operating rooms, wards), public service centers (mu-
nicipal, government), banks (front and back office), air-
ports, supermarkets, field-services, transportation sys-
tems and more. Our focus is on operational character-
istics, namely customer or server flows, and on sys-
tem congestion as manifested by its queues (with op-
erational characteristics serving also as surrogates for
financial, psychological or clinical performance). In
such realities, as will be now demonstrated, a network-
view is natural. This leads to our operational network

models of service systems, which will be referred to as
Service Networks, or ServNets for short.

2.1.1 Static and dynamic depictions of ServNets
(call centers and hospitals). To be (visually) con-
crete, Figure 1 displays two snapshots of call-center
ServNets, both generated from SEELab data. The left
one represents overall customer flow—through the an-
swering machine, waiting in a queue, being served or
abandoning. The right figure zooms in on skills-needs
matching—flow from queues of customers (needs, in
green) to pools of agents (skills, in orange).

Figure 2, and its corresponding animation (https:
//youtu.be/H7Td6q-uI7w), are based on SEELab data
from Boston’s Dana Farber Cancer Institute (DFCI).
This real data covers jointly about 1000 patients daily,
who are treated by around 350 medical personnel (in
particular doctors and nurses) in 100 (20) exam (con-
sultation) rooms and over 150 infusion positions. The
data/animations capture the precise location/status of
all these resources, over several years; it has been gath-
ered continuously and automatically through a Real-
Time Location System (RTLS), that collects data via
900 sensors scattered over 8 clinical floors.

Figure 3 focuses on the care-path—61 hospital
visits—of a single DFCI patient over a 6-month pe-
riod: a typical single full visit consists of a blood test,
then a doctor’s exam and finally an infusion treatment;
the figure displays also the queues prior to these three
activities. Figure 2 in Mandelbaum et al. (2017), with
its animation (https://youtu.be/e1qHeYg7hfw), com-
plement Figures 2–3 by displaying all patient locations
at a single infusion unit (28 chairs and beds).

2.1.2 Our examples of ServNets: QNets, SimNets,
FNets, DNets. Queueing theory is ideally suited to
capture the operational tradeoff that is at the core of any

FIG. 1. Call-Center ServNets (SEEGraphs). Magnifying the above reveals futher details. Related animations can be viewed on
https://www.youtube.com/watch?v=1A6-jzS_scI&t=65s; in particular, “Skills-Needs Matching” starts at minute 1:40 of the video.

https://youtu.be/H7Td6q-uI7w
https://youtu.be/e1qHeYg7hfw
https://www.youtube.com/watch?v=1A6-jzS_scI&t=65s
https://youtu.be/H7Td6q-uI7w
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FIG. 2. ServNets of Resources. From left to right: patients, infusion nurses, doctors, blood-draw nurses, rooms. Data animation can be
viewed on https://youtu.be/H7Td6q-uI7w.

FIG. 3. Complex care-path at DFCI = 61 hospital visits by a single patient (the red dot) over 6 months. The visits are sorted by visit-type
(as opposed to chronologically). Data animation can be viewed on https://youtu.be/e1qHeYg7hfw.

https://youtu.be/H7Td6q-uI7w
https://youtu.be/e1qHeYg7hfw
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service, namely quality versus efficiency, and it is flex-
ible enough to provide insights beyond the operational.
However, and as already suggested, classical queueing
models are unable to tractably accommodate many ser-
vice characteristics (e.g., transience or finite-horizon,
heterogeneity, fork-join or precedence and synchro-
nization constraints, fairness) and service resolutions
(from mass customization to flow aggregates). One so-
lution is then to resort to either simulation or approx-
imations. Simulation models, or SimNets, play an im-
portant role in the modeling world due to their gen-
erality and proximity to reality—but these advantages
come at the cost of complexity, which renders SimNets
difficult to develop, maintain/update and analyze. Be-
low we shall outline an approach/vision that will at-
tempt to overcome some or most of these shortcom-
ings. Toward that end, one must enrich the family of
tractable models, which is the role of approximations.

Our framework for approximations (which needless
to say is biased by our own research) is based on
asymptotic queueing theory (Whitt, 2002a, Chen and
Yao, 2001, Robert, 2003), specifically fluid (thermody-
namic, macroscopic) limits, and their diffusion (meso-
scopic) refinements. The former gives rise to Fluid
Network models of service systems (FNets, derived
via strong laws of large numbers for stochastic pro-
cesses), and the latter to Diffusion Networks (DNets,
via functional central limit theorems). Growing out of
asymptotic laws, FNets and DNets strip their origi-
nating QNets off their inessential characteristics. As
such, they enjoy dramatically reduced complexity, and
hence increased robustness, which makes them poten-
tially valuable for inference, analysis, design, control,
prediction and simulation of their originating service
systems.

2.1.3 QED ServNets, ideally. Depending on their
strategic goals, service systems typically thrive to be
Quality-Driven (short delays of customers to servers)
versus Efficiency-Driven (short delays of servers to
customers). However, service systems that are not “too
small” could circumvent this trade-off by being both
Quality- and Efficiency-Driven, or QED for short. The
QED operational regime entails carefully matching
service capacity with customer demand, and asymp-
totic ServNets provide the recipe for this to happen.

Quantitatively, the recipe for QED performance is
the square-root staffing rule (Erlang, 1948, Whitt,
1992, Garnett, Mandelbaum and Reiman, 2002, Gans,
Koole and Mandelbaum, 2003, Brown et al., 2005),
which reads as follows (using the terminology of call

centers, though only for concreteness): Suppose that
N statistically identical agents cater to a single queue
of customers that await telephone service; suppose
also that the offered-load demanded by customers is
R; here, R is the average amount of work, measured
in units of time, that customers demand per time-
unit. (For example, an arrival rate of 25 customers
per minute, each demanding an average service of
duration 4 minutes, gives rise to an offered-load of
R = 25 × 4 = 100 minutes-of-work per minute-time.)
The QED regime is then guaranteed by a staffing level
of N = R + β × √

R + o(
√

R) agents, where β is
a relatively small constant (e.g., within [−1,2], as
in Plot 5.3); the exact value of β is determined by
further refined specifications, for example, quantify-
ing the importance of service quality relative to sys-
tem efficiency (Borst, Mandelbaum and Reiman, 2004,
Mandelbaum and Zeltyn, 2009) (e.g., cost of an aban-
donment, or its forgone profit, relative to the salary cost
of agents).

2.1.4 Two concrete examples: Erlang-A (Garnett,
Mandelbaum and Reiman, 2002) and Erlang-R (Yom-
Tov and Mandelbaum, 2014). As mentioned, Erlang-
A motivated Brown et al. (2005), and has consequently
become the basic call center model; Erlang-R has been
found useful in healthcare settings (e.g., for modeling
emergency departments).

Consider first Erlang-A: Customers arrive in a queue
according to a Poisson process with rate λ; they “en-
joy” patience of exponential duration with mean 1/θ

(they abandon the queue once their wait reaches their
patience); customers are served on a first-come-first-
serve basis by N independent and statistically identical
servers, who provide services of exponential durations
with mean 1/μ (rate μ). Defining its state to be the to-
tal count of customers (waiting or in-service), Erlang-
A is then a 1-dimensional birth-death process, which
is characterized by the 4 parameters (λ,μ, θ,N). Its
steady-state could successfully capture/model the op-
eration of say a call-center during a short period such
as one hour: see Figure 8 in Brown et al. (2005).

As it turns out (e.g., Brown et al., 2005, Reich,
2011), however, none of the underlying assumptions
of Erlang-A (Poisson arrivals, exponential service and
patience, independence among all its building blocks)
prevails in practice. Moreover, being a model of a sin-
gle queue of impatient customers, who are served by
a single pool of agents, Erlang-A is comparable to
merely the right-most arc of ServNet 1.2 in Figure 1.
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Still this very simple Erlang-A, as well as its corre-
sponding FNet and DNet, have been found highly valu-
able for both their theoretical insights into and prac-
tical support of call center operations (Garnett, Man-
delbaum and Reiman, 2002, Gans, Koole and Mandel-
baum, 2003, Brown et al., 2005)—such an operation
could be as complex as the model of the basic call cen-
ter in Figure 1 of Garnett, Mandelbaum and Reiman
(2002)), or even ServNet 1.1 in Figure 1.

Moving on from call centers to hospitals, a 2-
dimensional time-varying Markov jump process (net-
work) was needed for capturing nurse operations in an
emergency department, or physicians during a mass-
casualty event. That need traces to a combination
of two factors: arrival rates are time-varying (as op-
posed to the steady-state Erlang-A) and patients un-
dergo a service process that consists of Recurrent ser-
vices (e.g., nurse service, then a “pause” for an x-ray,
then nurse service again, etc.), hence Erlang-R. For-
mally (Figure 1 in Yom-Tov and Mandelbaum (2014)),
Erlang-R has arrivals that are nonhomogeneous Pois-
son; and upon service completion, each customer either
completes the service process with probability 1 − p,
or alternatively “goes into orbit” where the customer
spends an exponential(δ) time (mean 1

δ
), after which

the customer rejoins the queue for an additional ser-
vice.

In Yom-Tov and Mandelbaum (2014), it is demon-
strated, based on Erlang-R or rather its time-varying
FNet model and DNet refinements, that an appropriate
time-varying square-root staffing, in fact, stabilizes the

operational performance of nurses or physicians. This
was validated against two simulation models (Sim-
Nets), specifically a (stylized) time-varying Erlang-R
and a (realistic) simulation model of an emergency
department. For future reference, readers should note
that all four ServNets (QNets, FNets, DNets, SimNets)
were used in the above-described analysis of Erlang-R
(Yom-Tov and Mandelbaum, 2014).

2.1.5 Why be optimistic? Because “simple mod-
els can valuably portray complex realities.” Consider
first the basic building blocks of ServNets—arrival
processes and service durations. Unscheduled arrivals
(e.g., to call centers or emergency departments) of-
ten fit Poisson processes and their relatives (more
on this below); appointment-driven arrivals, on the
other hand, are determined by system appointment-
time and customer-punctuality: Figure 4(a) shows that
the latter fits an asymmetric Laplace distribution. As
for service-durations, for example, telephone services
(Brown et al., 2005) and doctor-exams (Figure 4(b))—
these are often found to be LogNormally distributed.

Interestingly, there are of yet no theoretical expla-
nations for the above excellent parametric fits, which
does not take away from their value (e.g., these dis-
tributions serving as building-blocks of SimNets). We
have thus shown that simple (parametric) models could
fit (the building blocks of) a complex ServNet well.

Figure 5 continues this theme, via four data-stories
from call centers (“told” at the SEELab). Figure 5(a)
and (b) depict the congestion law of State-Space-
Collapse, which arises in heavy-traffic asymptotics

FIG. 4. Punctuality of patients and durations of doctor exams: Simple Models Fit Complex Realities.
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FIG. 5. Data Stories, as told by SEEStat.

of DNets (conventional (Bramson, 1998) or many-
servers (Gurvich and Whitt, 2009)). According to
this law, queue-lengths of different customer classes
(Figure 5(a)) are actually proportional (equal in Fig-
ure 5(b), after normalization), at the granularity of
an individual sample-path and at all times (the time-
resolution in Figure 5(a) and (b) is 30 seconds): thus
effectively, a low-dimensional model captures (almost
surely) the dynamics of a high-dimensional system.
Figure 5(c) validates asymptotic theory: it depicts a
QED call-center, as introduced earlier, in which N ≈
R+β

√
R; here N is staffing level, R = λ/μ is offered-

load, and β is the constant that determines precise op-
erational performance.

Finally, Figure 5(d) (from Mandelbaum and Zeltyn
(2013)) amplifies the complexity of customer wait-
ing, in particular over the phone: the red line corre-
sponds to the time that a customer is willing to wait—
(im)patience; and the blue line is the time that a cus-
tomer is required to wait—virtual wait (“virtual” since

this is the waiting time of a customer equipped with
unbounded patience; thus the actual wait is the min-
imum between willing and required). Note that, data-
wise, patience and virtual-wait right-censor each other
(e.g., the patience of a customer who was served af-
ter 2 minutes is at least 2 minutes), hence Figure 5(d)
displays uncensored graphs. We learn from it that an
announcement every minute affects (im)patience (red
line)—indeed it triggers abandonment (somewhat sur-
prising (Brown et al., 2005)), and a priority upgrade
every 2 minutes affects the required wait (blue line)—
it increases the likelihood of being served (which is to
be expected).

2.1.6 Diving deeper into the main building blocks of
ServNets, statistically. Going beyond the above “data-
stories,” Brown et al. (2005) motivated ample statistical
research on ServNet building blocks and their interac-
tion.

Waiting time. There is even more than meets the eye
in Figure 5(d): Li, Huang and Shen (2018) studies how
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the behavior changes as a function of two timescales—
waiting duration, and the time-of-day when a customer
calls in. The latter is natural since time-varying envi-
ronments are prevalent in service systems. Figures 3
and 4 in Li, Huang and Shen (2018) first demonstrate
that, conditioning on time-of-day, the effects of an-
nouncements and priority upgrades remain similar to
Figure 5(d); as for temporal behavior, customers’ pa-
tience level is quite stable for most of the day, while be-
ing the lowest around 5 pm and highest in the evening.

Arrivals. Time-inhomogeneous Poisson processes
(with potentially random arrival rates to accommo-
date overdispersion) have proved to be valuable mod-
els for arrivals at call centers and hospitals; see Kim
and Whitt (2014), for example. More recently, Chen,
Lee and Shen (2018) show that a Poisson process,
with a rate that is a simple sum of sinusoids, can ad-
equately describe the reality of call centers and emer-
gency departments; they further introduce a statistical
learning technique for estimating the time-varying ar-
rival rate. Empirical research has shown that the rates
at which customers arrive are not known with cer-
tainty ahead of time, and hence must be forecasted.
Statistical models have sought to better character-
ize the distribution of arrival rates, by time of day,
as they evolve; see, for example, Weinberg, Brown
and Stroud, 2007, Shen and Huang, 2008a, Shen
and Huang, 2008b, Aldor-Noiman, Feigin and Man-
delbaum, 2009, Matteson et al., 2011, Taylor, 2012,
Ibrahim and L’Ecuyer, 2013, Ibrahim et al., 2016a,
Ye, Luedtke and Shen, 2019. Data-Driven forecasting
and stochastic programming (SP) framework is pro-
posed by Gans et al. (2015) to cope with arrival-rate
uncertainty, integrating statistics and operations man-
agement. Intra-day forecast updating and SP with re-
course are incorporated so that managers can dynam-
ically adjust agent schedules to make staffing levels
more efficient.

Service durations. Another important empirical ob-
servation made by Brown et al. (2005) is service-time
heterogeneity, namely service durations that are agent-
dependent (some agents are faster than others). Re-
gression techniques have been developed to systemati-
cally understand how time-dependence, learning, shift
fatigue, cross-training and other factors affect the dis-
tribution of service durations (Shen and Brown, 2006,
Gans et al., 2010, Ibrahim et al., 2016b). Mixed-effects
models were used to study agent population hetero-
geneity, which revealed that the rate and ultimate de-
gree of learning can differ significantly across agents.
Such statistical findings can guide the development

and analysis of operational models, which account for
agent heterogeneity in hiring, staffing and retention
policies.

Most existing research treats building blocks as be-
ing independent. Hence each block is analyzed unilat-
erally while, in fact, there can exist dependence among
building blocks: for example, long patience goes hand
in hand with long service (Reich, 2011). Such depen-
dence underscores our network view, in which blocks
are connected as parts of a process, and hence analyzed
jointly.

2.2 Research Framework for Automatic Creation of
Valuable ServNets.

We ask the reader to contemplate the following two
questions:

Q1 What did it take to produce the networks in Fig-
ures 1, 2 and 3?

Q2 What will it take to create SimNets for such net-
works?

The two short answers, respectively, are “a lot” and
“not much,” which suggests that state-of-the-art is
not far from being able to automatically create all
ServNets from data. In support of this vision, we pro-
pose the research framework in Figure 6:

1. Start with obtaining data from a service system
and convert it to ServData format;

2. Use a statistical engine (SEEStat) and a graphi-
cal engine (SEEGraph) to model the building blocks of
ServNets;

3. Create a data-based simulation (SimNet) that will
serve as a virtual reality of that system;

4. Create a corresponding QNet model;
5. Develop data-based FNets and DNets (approxi-

mations) of the QNet. (With enough experience, one
could create both directly from data.);

6. Use SimNet to test the accuracy and value of,
namely validate, all mathematical models (QNet,
FNets, DNets);

7. Repeat Steps 2–6 as necessary.

Figure 6 was created after the classical scientific
paradigm: experiment, measure, model, validate, ana-
lyze, refine, etc. It is traditional and routine in biology,
chemistry and physics, and recently has been exercised
also in economics and transportation. Here, we pro-
pose to adopt it to what can be called Service Science;
or perhaps the special case of Network Science, where
the network is a ServNet. This will yield a novel the-
ory that is born from measurements and experiments.
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FIG. 6. Research framework—from data to ServNets and beyond.

But unlike in most of the above sciences, where exper-
imentalists generate data and conjectures for theoreti-
cians, our new sciences are only now starting to build
the infrastructure for collecting, managing, and exper-
imenting with service data and the models it supports
(e.g., data from call centers, hospitals and expanding to
internet-based shared-economy data).

What have we learned from the above? That, with the
right theoretical (asymptotic) backing, simple QNets,
FNets and DNets (though not too simple) can cap-
ture specific essentials of a complex service system,
for example, total customer count or the dynamics of
a subsystem. These simple models can then be val-
idated, theoretically and practically, against a data-
based SimNet of that system. Our lesson has been ab-
stracted to the framework in Figure 6. And the research
that will operationalize the framework must do it all:
identify, formulate and solve open problems, pave new
research directions and explore uncharted territories.

2.3 Further Research.

Significant knowledge gaps must be addressed along
several directions: Theory (asymptotics of ServNet
idiosyncracies); Design and Staffing (e.g., stabiliz-
ing performance over time); Control (time-varying,
information-sensitive); Statistical Inference (EDA,
structure, missing data); Automatic Creation of
ServNets; Validation (value-testing against SimNets).
We now expand on some statistics-related ingredients.

2.3.1 Statistical inference. Naturally, statistics
plays important roles in our data-based research
agenda, some leading roles and some facilitating, some
existing and many yet to be developed. First and
foremost, EDA (Exploratory Data Analysis (Tukey,

1977)) will remain an eye-opener and a research
guide, as in Brown et al. (2005) for call centers
and Armony et al. (2015) for hospitals. For exam-
ple, this is how it was discovered that service dura-
tions are often LogNormally distributed, which has
inspired deep research on many-server queues with
general service times (Puhalskii and Reiman, 2000,
Mandelbaum and Momčilović, 2012, Kaspi and Ra-
manan, 2011). Statistics will also help support the
modeling and analysis of ServNet building blocks and
their interaction—recall Figure 4, then also consider
modeling the process of arrivals to service, and calcu-
lating offered-loads when there exists dependence be-
tween service duration and impatience (Reich, 2011).
The roles above mostly fall under traditional Statistics,
with some (e.g., validation of models) requiring tools
from Data/Process Mining (Senderovich, 2016) and
very likely/naturally Process Machine Learning.

A theme that goes beyond the traditional is the inter-
play of statistics with asymptotics, which raises novel
statistical and mathematical problems. An example of
a theory that came out of data is the asymptotic staffing
recipes against over-dispersed arrivals (Maman, 2009).
Such overdispersion (more stochastic variability than
Poisson) prevails in call centers (but, interestingly, not
in emergency departments where patient arrivals fit
well a nonhomogeneous Poisson process). Conversely,
examples of statistical questions that arise from the-
ory, and for which asymptotic models will facilitate,
are inference of system structure (Deo and Lin, 2013,
Zeltyn et al., 2011), completion of partial information
(Zhang and Serban, 2007) and imputation of data that
is either missing or costly to get (e.g., service durations
of abandoning customers, which are unobserved yet re-
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quired for calculating offered-loads (see Reich (2011),
but much remains to be done).

2.3.2 Estimating (im)patience via asymptotics. An
unexplored inference question is that of fitting an
asymptotic regime: do our data originate in a QD or
ED or QED system? (QED, as already defined, care-
fully balances service quality and servers’ efficiency
while, due to economies-of-scales, achieving high lev-
els of both; QD, standing for Quality-Driven, is an op-
erational regime that emphasizes service quality over
efficiency, namely customers enjoy very high levels of
service but at the cost of high idleness levels—low
efficiency—of servers; conversely ED, which corre-
sponds to Efficiency-Driven, thrives for high levels of
servers utilization—high efficiency—at the cost of rel-
atively poor service levels.) Why would one wish to
know? We now present an example in which knowing
the regime simplifies the inference of the originating
QNet. In QED systems with impatient customers, the-
ory tells us that the role of the impatience distribu-
tion is fully captured by its behavior near the origin, or
the value of its density g(0) when positive (Zeltyn and
Mandelbaum, 2005, Dai and He, 2010, Mandelbaum
and Momčilović, 2012), which we now assume. Thus,
it suffices to estimate only g(0) and not worry about the
full impatience distribution. (The latter would require
survival analysis that accommodates censored data: be-
ing served after waiting for 1 minute provides only a
lower bound, 1 minute, on that customer’s impatience
(Brown et al., 2005).) One can estimate g(0) via the
congestion law P {Abandon} ≈ g(0)×E[Wait] (Zeltyn
and Mandelbaum, 2005); and performance is then cal-
culated via formulae (sometimes tractable and always
simpler) of ServNets in which impatience is exponen-
tial with mean 1/g(0) (Zeltyn and Mandelbaum, 2005,
Mandelbaum and Momčilović, 2012). This could al-
ready be a happy ending: QED analysis reduced the
estimation of the full impatience distribution to a
straightforward estimation of the slope of a straight
line. But the story is getting even more interesting.
There is a refined QED regime—after hazard-rate
scaling (Reed and Tezcan, 2012)—which does retain
the entire abandonment distribution. The theory then
tells us that such scaling would lead to more accurate
asymptotics when, for example, the magnitude of the
derivative of the hazard-rate function at the origin is
large. However, testing the empirical robustness of tra-
ditional QED (equivalently here, testing the need for
hazard-rate scaling) calls for estimation of this deriva-
tive, which brings back the previously mentioned need
for fitting or testing for a regime.

2.3.3 Forecasting. Forecasting of arrivals has been
well surveyed by Ibrahim et al. (2016a) for service
systems with one arrival stream. However, ServNets
more often than not have multiple arrival streams, that
are furthermore dependent, which is a scenario studied
in Ibrahim and L’Ecuyer (2013), Ye, Luedtke and Shen
(2019). One must also study the impact of interstream
dependence on operational decisions, such as agent
pooling, in a similar spirit to what Gans et al. (2015)
did for single-arrival stream systems. Then Gans et al.
(2010) observe that service capacity changes across
time due to learning, forgetting and agent attrition,
which raises the need to forecast available service ca-
pacity (Azriel, Feigin and Mandelbaum, 2014). Wait-
ing time, as the outcome of the interplay between ar-
rivals, services and patience, must be forecasted as
well. Delay prediction is presently an active research
area; see Ibrahim and Whitt (2011), Senderovich et al.
(2015), Dong, Yom-Tov and Yom-Tov (2018), and
more is appearing regularly such as Ibrahim (2018).
The challenge of prediction can escalate up to the pre-
diction of a whole ServNet. Consider, for example,
DFCI: here one seeks to predict complete network per-
formance, given the appointment book of all resources.

2.3.4 Model selection and post-model selection in-
ference (PoSI). The creation of a suitable ServNet nat-
urally involves model selection, for example, select-
ing the “right” model for each building block of the
ServNet, which shall then be validated and selected
again if needed via an iteration process. Classically in-
ference is made assuming that the model selected is
correct, which unfortunately rarely is the case. PoSI,
recently pioneered by Brown’s group at the University
of Pennsylvania (Berk et al., 2013), aims at the valid in-
ference that incorporates the effects of model selection.
Performing PoSI on ServNets is both an intriguing and
challenging research direction.

2.3.5 Validation. Both Chen et al. (1988), Adler
et al. (1995) are examples of data-based modeling.
Their guiding principle prevails here as well: Search,
within a tractable family of ServNets, the one that is
most appropriate for its needs. It remains to specify the
“family” (in particular, is it a QNet or FNet or DNet)
and define “appropriate.” This requires the develop-
ment of a validation framework, where questions such
as the following can be formally addressed: How is one
to measure or test the accuracy, or better yet robust-
ness or practical value, of an asymptotic approxima-
tion? What are the sources of uncertainty in a model
or its building blocks (Whitt, 2002b)? And “how” to fit
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a simple model (not too simple) to a complex service
reality? There are pitfalls to beware of as mentioned in
Whitt (2012) and, generally, this territory is relatively
uncharted.

2.3.6 Performance analysis of ServNets. Many soft-
ware tools have been developed for the performance
analysis of QNets. As far as we know, only two uti-
lize insights from queueing asymptotics (conventional
heavy-traffic): Whitt’s (1983) QNA and Dai, Yeh and
Zhou’s (1997) QNET, both focusing on steady-state.
A third numerical tool by Kang and Pang (2013) has
been developed for time-varying FNets under many-
server scaling. It seems feasible to amalgamate the ap-
proaches in Whitt (1983), Dai, Yeh and Zhou (1997),
Kang and Pang (2013) to cover QNets, FNets, and
DNets. Each of these three could lead to a SimNet.
Specifically, QNet-based simulations have been com-
mon practice, and many have been customized to hos-
pitals and call centers: an example to follow is the
Java suite in Chan and L’Ecuyer. However, FNet-
and DNet-based simulation of service networks have
not yet been attempted. Insights will be gained from
the applications to Finance of DNet-based simula-
tions (Glasserman, 2004) and PDEs (Muthuraman and
Zha, 2008), as well as from general-purpose simula-
tion theory for stochastic processes (Glynn and Igle-
hart, 1989).

2.3.7 Why create ServNets automatically? There
are numerous applications for automatically created
ServNets. Demonstrating with SimNets, one could
have the following three applications in mind: as al-
ready mentioned above, and carried out for Erlang-R
(Yom-Tov and Mandelbaum, 2014), SimNets will pro-
vide a virtual-reality environment against which other
ServNets (QNets, FNets, DNets) can be validated; they
will be used to generate bootstrap ServNet samples
(Cowling, Hall and Phillips, 1996); and they are essen-
tial players in simulation-based staffing and control, as
in Feldman et al. (2008), Feldman and Mandelbaum
(2010).

2.3.8 Broader relevance, in particular to network
science. The framework originating in Brown et al.
(2005) and outlined in Section 2 has the potential to
significantly affect research and teaching in other ar-
eas and disciplines that are central to service systems:
marketing, information systems, psychology and hu-
man resource management. But the potential goes fur-
ther, as demonstrated by the emerging field of “Net-
works” (Newman, 2018, Newman, 2008)—simply re-
call the ServNets in Figure 2. The mathematical and

statistical theory of Networks (Kolaczyk, 2009) has
mainly dealt with static/structural models of social,
biological, information and technical networks, while
acknowledging that dynamic models are important but
their research is yet to mature. Service systems and
their ServNets offer a novel area for Network Science
and its application, which amplifies the importance of
dynamic (time-varying) network models and their vi-
sualization (Bender-deMoll and McFarland, 2006).

An important research area is network tomography
(Vardi, 1996) or inverse problems (Baccelli, Kauff-
mann and Veitch, 2009), which was referred to previ-
ously as completing partial information: for example,
how does one track patient flow within an emergency
department, based on entries and intermediate mile-
stones. A final point is that the asymptotic focus of
“Networks” has been large networks with local inter-
actions, but its mathematical framework for limit theo-
rems could prove useful for ServNets as well.

3. NONPARAMETRIC EMPIRICAL BAYES WITH
BASEBALL DATA.

Brown has been known as a world-leading statistical
decision theorist but he is also a data scientist in to-
day’s terminology. His profound understanding of the-
ories powers applications. Brown (2008), published in
one of the very early volumes of The Annals of Applied
Statistics, is one such example. In an attempt to pre-
dict batting average for baseball players, he illustrates
a golden procedure that a statistician or a data scientist
should follow:

1. Identify a meaningful and useful problem with
domain knowledge;

2. Start with a suitable working model when needed;
3. Propose methodologies to solve the problem;
4. Validate the entire procedure based on the data;
5. Last but not least make the data used publicly

available.

Another focus of the paper lies in Brown’s con-
tinuous effort to reveal properties of shrinkage meth-
ods in normal mean problems. Since Stein’s (1956)
first discovery of the inadmissibility of classical least
squared estimator for multivariate normal means, nu-
merous estimators have been proposed (James and
Stein, 1961, Stein, 1962, Lindley, 1962, Strawderman,
1971, Strawderman, 1973, Efron and Morris, 1975,
Efron and Morris, 1977). Shrinkage is the key property
of these estimators. An empirical Bayes interpretation
was developed in Efron and Morris (1973).
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The properties of the shrinkage estimators are well
studied and all perform similarly for normal mean
problems in the homoscedastic case. Nevertheless, the
optimal shrinkage scheme for the heteroscedastic set-
up is unclear to date. With this in mind, Brown pro-
vided an insightful study comparing several methods,
which include naive standard methods, James–Stein
estimator, empirical parametric Bayes, and nonpara-
metric empirical Bayes.

All methods in Brown’s paper are preceded by ap-
plying the variance-stabilizing transformation. The es-
timates are evaluated after transformed back into the
original scale. Several measures of accuracy are pro-
posed to evaluate the estimates. It is possible, how-
ever, to proceed without transforming the data first.
Here, we start by reproducing the methods mentioned
in Brown’s paper. These methods can only provide
point estimates. To measure the uncertainty of the esti-
mates, we apply a nonparametric empirical Bayes so-
lution developed in Cai and Zhao (2019) to provide not
only point estimates, but also prediction intervals. All
the point estimates show comparable accuracy.

In Section 3.1, we highlight Brown’s paper. Sec-
tion 3.2 describes the binomial empirical Bayes method
developed in Cai and Zhao (2019). We compare all the
methods and results are shown in Section 3.3.

3.1 Highlights from Brown (2008).

Batting aveRage (R) is an important metric to evalu-
ate a player’s performance. It is the proportion of suc-
cessful attempts, “Hits” (H ), as of the total number of
qualifying attempts, “AtBat” (N ), that is, R = H/N .
Prediction of batting average allows the team to de-
velop batting strategies.

3.1.1 A binomial model. It is reasonable to assume
for each player Hi

ind∼ Bin(Ni,pi), where pi charac-
terizes the true, batting ability for player i. Assume
the players ability is somewhat stable, that is, pi is a
constant, we can then use results from the earlier sea-
son to predict the performance in the later one. Using
the monthly record of Major League players in 2005,
Brown (2008) estimated pi based on the first half sea-
son (from April through June) and then applied the es-
timate to predict and validate the performance in the
second half season (July through September). To be
more specific, for player i in season j we have inde-
pendently

(1) Hji ∼ Bin(Nji,pi),

where j = 1,2 and i = 1, . . . ,Pj . The first step is to
produce a good estimate for pi .

3.1.2 Variance stabilization. When N is not too
small and H ∼ Bin(N,p), H/N can be well approxi-
mated by a normal distribution with mean p and vari-
ance p(1 − p)/N . Note that the variance involves un-
known p but can be transformed using the variance-
stabilizing transformation so that it only depends on
the observed N . Considering a family of variance-
stabilizing transformations,

(2) Y (c) = arcsin

√
H + c

N + 2c

for some constant c, Y (c) follows approximately a nor-
mal distribution with a stabilized variance

(3) Var
(
Y (c)) = 1

4N
+ O

(
1

N2

)
.

The choice of c = 1/4 minimizes the approximation
error of the mean, that is,

(4) E
[
Y (c)] = arcsin

√
p + O

(
1

N2

)
and thus

(5) sin2(
E

[
Y (c)]) = p + O

(
1

N2

)
.

Combining (2)–(4), we have

(6) Y (1/4) ∼ N
(

arcsin
√

p,
1

4N

)
.

The above layout allows us to use Y (1/4) to estimate
arcsin

√
p as an unknown normal mean after which the

estimator will be transformed back through (5).

3.1.3 Methods considered in Brown (2008). Fol-
lowing the setup above, we apply the variance-stabi-
lizing transformation to the performance for the first-
half of the season to estimate pi . Let X1i be the trans-
formed batting average for player i in the first-half of
the season, that is,

X1i = arcsin

√
H1i + 1/4

N1i + 1/2
.

By (5), X1i can be accurately treated as independent
random variables with the distribution

(7) X1i ∼ N
(
θi, σ

2
1i

)
,

where θi = arcsin
√

pi and σ 2
1i = 1/(4N1i ).

We now describe four approaches considered in
Brown (2008), and an alternative using maximum like-
lihood nonparametric empirical Bayes in Section 3.2.
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1. Naive estimator: The baseline is a naive estima-
tor that uses the first-half performance to predict the
second-half performance.

2. James–Stein estimator: The following extended
James–Stein estimator is used to accommodate the het-
eroscedastic setting.

(8) θ̂i = μ̂ +
(

1 − P1 − 3∑
(X1i − μ̂)2/σ 2

1i

)
+
(X1i − μ̂),

where μ̂ = (
∑

X1i/σ
2
1i )/(

∑
1/σ 2

1i ).
3. Parametric empirical Bayes: Various parametric

Bayes estimators have been investigated. The classical
approach imposes a normal prior θi ∼ N (μ, τ 2) and
estimates the hyperparameters by the method of mo-
ments or maximum likelihood, which yields the para-
metric empirical Bayes estimator,

θ̂i = μ̂ + τ̂ 2

τ̂ 2 + σ 2
1i

(X1i − μ̂).

Other methods have been proposed after Brown
(2008). Xie, Kou and Brown (2012) developed a
SURE shrinkage estimator for the heteroscedastic case
and Weinstein et al. (2018) proposed a group-linear
Bayes estimator that exploits the dependence between
true means and sampling variances by grouping ob-
servations with similar variances. It is also possible
to directly work on the original scale. For instance,
Muralidharan (2010) proposed a binomial mixture
model using a Beta prior.

4. Nonparametric empirical Bayes: Parametric pri-
ors are mathematically tractable but may not best ap-
proxiamate the distribution of θ . Nonparametric pri-
ors provide flexibility to capture the heterogeneity in
the unknown parameters of interest. We focus on a few
variants of the nonparametric Bayes method here.

Let G denote an unknown distribution and assume
θi ∼ G independently, then the posterior mean is

E(θi |X) =
∫

θiφ(Xi−θ
σi

)G(dθ)∫
φ(Xi−θ

σi
)G(dθ)

,

where φ denotes the standard normal density. Using
Formula 1.2.2 in Brown (1971), we can indirectly ob-
tain the posterior mean

(9) θG(X)i = Xi + σ 2
i

∂
∂Xi

gi(X)

gi(X)
,

where gi(X) = ∫
φ(Xi−θ

σi
)G(dθ) is the marginal den-

sity of X and can be estimated by kernel estimators.
Brown and Greenshtein (2009) proposed an estimator

that adapts well to both sparse and nonsparse cases
based on this formulation.

Along this line, Raykar and Zhao (2010) incor-
porated a sparsity-adaptive mixture prior. Jiang and
Zhang (2009), Jiang and Zhang (2010) developed a
general maximum likelihood empirical Bayes method
for the homoscedastic case that directly estimates the
prior G and extended it to the heteroscedastic case with
known variance. Koenker and Mizera (2014), Gu and
Koenker (2017) recast the nonparametric maximum
likelihood problem as a convex optimization problem
and solved by interior point method, which gained con-
siderable speed, and further improved the estimate by
incorporating covariates and longitudinal data. Dicker
and Feng (2016) further bounded the approximation er-
ror. All the methods above focus on point estimation.

3.2 The Binomial Empirical Bayes Approach.

All the above mentioned methods use standard
variance-stabilizing transformations which transform
a binomial distribution into a normal distribution with
known variance, and at the same time achieve the best
control of bias asymptotically.

Brown (2008) focuses on batters having more than
10 at-bats since the transformed data is well-approxi-
mated by a normal distribution when N is larger than
10. Since batters with more than 20 at-bats account for
a relatively large population (91%), the binomial data
can be approximated by the normal distribution reason-
ably well.

In particular, we model the batting average Ri as fol-
lows:

(10) Ri = Hi

Ni

∼ N
(
pi, σ

2
i

)
, independent.

We directly estimate the variance

σ̂i =
√

pi(1 − pi)/Ni.

The variance can also be estimated using a more robust
plug-in estimator such as the mean absolute deviation.

Again, assume a nonparametric prior on pi ∼ G in-
dependently, where G denotes an unknown distribu-
tion. The unknown prior can be estimated using the
data. We then compute the posterior distribution of pi

using Bayes’ theorem. Point estimates, such as the pos-
terior mean, credible intervals and predictive intervals
are readily followed.

Alternatively, we can adopt the independent bino-
mial model Hi ∼ Bin(Ni,pi) and follow the same
recipe to estimate pi .
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3.2.1 Nonparametric empirical Bayes via maximum
likelihood. In this section, we will describe our proce-
dure based on normal approximation (10). Since a fully
nonparametric prior is infinite-dimensional, we esti-
mate the nonparametric prior G of batting probability
by discretizing its domain into a fine equal-length mesh
with M grid points {τj }Mj=1 supported on the range of
the observed data. We will estimate πj = G(τj ).

To be more specific, we approximate the nonpara-
metric prior as a multinomial distribution,

π(pi | π) ∼ Multinomial(π), independent,

where π = (π1, . . . , πM) and
∑

πj = 1. Consider π as
the hyperparameter estimated by maximizing the con-
ditional marginal log-likelihood of {Ri} given π ,

(11) π̂ = argmax
π

n∑
i=1

log

(
M∑

j=1

ϕ
(
(Ri − pj )/σi

) · πj

)
,

where ϕ is the standard normal density. The maximizer
can be obtained by a modified EM algorithm originally
proposed in Jiang and Zhang (2009). We adopted early
stopping to avoid overfitting.

The posterior distribution can be obtained through
(12)

π
(
p | Ri, π̂, σ 2

i

) = ϕ((Ri − p)/σi)π̂(p)∑M
j=1 ϕ((Ri − τj )/σi)π̂(τj )

,

where π̂ = π(p|π̂). The posterior mean

(13) p̂i(Ri, σi) = ∑
j

τjπ
(
τj |Ri, π̂, σ 2

i

)
is used as the estimator of p and (1 −α) credible inter-
vals are readily followed.

We further obtain the predictive distribution and con-
struct a predictive interval for a future R∗

i ,

πpred
(
R∗

i | Ri, π̂, σ 2
i

)
= ∑

j

ϕ
((

R∗
i − τj

)
/σi

)
π

(
τj |Ri, π̂, σ 2

i

)
.

(14)

As a remark, the procedure to obtain point estimates
based on the binomial model is similar but instead uses
a different likelihood. For details, see Cai and Zhao
(2019).

3.3 Prediction with 2005 Baseball Data.

Using the monthly batting records for all Major
League baseball players in the 2005 season as Brown
(2008), we predict the second-half season performance
using the first-half. Note that we only use batters with
at-bats more than 10 in the first-half to estimate and

batters with at-bats more than 10 in both the first-
and second-half for validation. We compare the above-
mentioned nonparametric empirical Bayes estimators
against the naive estimator and the extended James–
Stein estimator. Specifically:

1. Naive: δ0 = R1i ;
2. James–Stein: the extended James–Stein estimator

(8);
3. NPEB: Brown’s (2008) nonparametric empirical

Bayes method via variance-stabilizing transformation
(7);

4. NPEB_Normal_Approx: the nonparametric em-
pirical Bayes method described in Section 3.2 with di-
rect normal approximation (10) using (9) to estimate
the posterior mean;

5. NPEBML_Normal: the nonparametric empirical
Bayes via maximum likelihood (11);

6. NPEBML_Binomial: the nonparametric empiri-
cal Bayes via maximum likelihood with the binomial
model (1).

The accuracy of the point-estimates is measured by
the normalized total squared error as follows. Denote
Sj = {Nji ≥ 11} where j = 1,2, The Total Squared
Error (TSE) for R̂ is defined as

T̂SER[R̂] = ∑
i∈S1∩S2

[
(R2i − R̂2i )

2 − R2i (1 − R2i )

N2i

]
.

TSE is an unbiased estimator of the predictive risk. To
compare different estimators, we use the naive estima-
tor δ0 as a baseline and normalize each total squared
error by the total squared error of δ0, that is,

T̂SE
∗
R[R̂] = T̂SER[R̂]

T̂SER[δ0] .
Table 1 reports the normalized total squared error of

the six methods. The first block reports the normal-
ized total squared error of the naive estimator and the
James-Stein estimator; the second block reports NPEB
and NPEB_ Normal_Approx, the nonparametric em-
pirical Bayes estimators using (9); the third block re-
ports NPEBML_Normal that uses the normal approxi-
mation (10) and NPEBML_Binomial that uses the bi-
nomial model (1).

All nonparametric empirical Bayes estimators
achieve comparable performance in terms of TSE.
Note that the estimate of NPEB is transformed back
using R̂ = sin2(θ̂) while others use the data on the
original scale. The comparable performance justifies
the direct normal approximation of the binomial distri-
bution.
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TABLE 1
̂T SE

∗
R of half-season predictions for all batters

Naive James–Stein NPEB NPEB_Normal_Approx NPEBML_Normal NPEBML_Binomial

̂T SE
∗
R 1 0.540 0.51 0.536 0.599 0.645

3.3.1 Credible and predictive intervals. In addition
to a point estimate of pi , the nonparametric empirical
Bayes method can also provide both a credible interval
for pi and predictive interval for R∗

2,i using the equal
quantiles on both sides of the posterior distribution (12)
and the predictive distribution (14), respectively.

Figure 7(a) shows the 95% predictive intervals based
on the normal approximation model (10) for 50 ran-
domly selected players. We check the empirical cover-
age of the known R2i ’s. The green solid lines are the
predictive intervals that cover the observed R2 (green
dots); and the red dashed lines are those that do not
cover the observed R2 (red cross). The average cov-
erage is 93% and the average width of the predictive
intervals is 0.19.

Figure 7(b) displays the 95% credible intervals of
pi’s for 50 randomly selected players. We will not be
able to check the coverage probability for the unknown
true pi ’s here.

4. OFFICIAL STATISTICS.

In 1790, James Madison, one of the founding fathers
of the United States, said, “. . . in order to accommodate
our laws to the real situation of our constituents, we
ought to be acquainted with that situation” (Madison,

1790). At this point, the United States was a nascent
country, embarking on its first census. Madison’s opin-
ion was that the country could be effectively governed
only if the administration knew about its people and
their activities.

The federal statistical system has grown markedly
since then. In modern times, it can tell us that the
midwestern state of Ohio had 11,658,609 residents
in 2017, according to the Population Estimates Pro-
gram U.S. Census Bureau (2017a). From just the 2017
American Community Survey, we can also discover
(with margins of error corresponding to 90% confi-
dence):

• The median age in Ohio was 39.8 ± 0.1 years (U.S.
Census Bureau, 2017b);

• 8,830,185 ± 11,095 people were U.S. citizens of
voting-age (U.S. Census Bureau, 2017c);

• Among those with a Bachelor’s degree and at least
25 years old, 30.7% ± 0.5% have earned a de-
gree in science or engineering (U.S. Census Bureau,
2017d);

• 2.1% ± 0.1% of the working population 16 years
and older walked to work (U.S. Census Bureau,
2017e); and

FIG. 7. 95% predictive intervals of R∗
2i and credible intervals of pi for randomly selected 50 players.
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• 3.6% ± 0.3% of adult civilians in the state were
World War II veterans (U.S. Census Bureau, 2017f).

In addition, this system yielded maps outlining ge-
ographies from states to school districts (see Fig-
ure 10(a) for an example) and unique labels for those
areas through Federal Information Processing Standard
(FIPS) codes. These innovations standardized informa-
tion processing and reporting. Reams of paper (now
bytes) are devoted to tables and descriptions and ex-
planations of this data. All of it is available to the pub-
lic for free, regarded as a public good (Citro, 2016,
Eberstadt et al., March 2017).

These are official statistics, numbers produced by
governments (and other large organizations). With
such a large population and a wide range of surveys,
official statistics are probably one of the first examples
of big data and the use of technology for tabulation and
analysis.

The history of the U.S. federal statistical system can
offer guidance on how to think about three key issues
in data science today: (a) using data for purposes be-
yond originally intended, (b) protecting data privacy
and confidentiality, and (c) effectively using data which
is not, by its very nature, a random sample. (See Citro
(2016), Groves (2011), Pfeffermann (2015) for more
about the U.S. federal statistical system.)

Brown was an integral part of this system through his
testimony to the U.S. Congress in 1997 and 1998 about
the 2000 U.S. Census and his participation on numer-
ous National Research Council panels (e.g., Panel to
Evaluate National Statistics on Research and Devel-
opment; Panel on Coverage Evaluation and Correla-
tion Bias in the 2010 Census; Chair of the Committee
on National Statistics). This service spanned over 30
years.

4.1 Repurposing Data.

As noted, the first census in the United States took
place in 1790. It was carried out by many men riding
around on horseback, knocking on doors, and counting
the people (and slaves) inside. The logistics were com-
plicated even then, although the information collected
was not.

Required by the U.S. Constitution (Article 1, Sec-
tion 2) every 10 years (and so, “decennial census”),
the enumeration of every resident was needed primar-
ily to determine how many representatives each state
sent to the House of Representatives, part of the U.S.
Congress. This process is called apportionment. (The
next round of enumeration will occur in 2020.)

FIG. 8. Example of a schedule for the first census in 1790. Native
Americans who were not taxed by the government were excluded
from the count. (Source: U.S. Congressional Record (U.S. Census
Bureau, 1907).)

The first census, however, served two other func-
tions: (a) to obtain the number of potential army re-
cruits and (b) to determine how to tax the population
to pay for the American Revolutionary War (Nagaraja,
2019). Both impacted the census in different ways.

Figure 8 shows the type of information enumera-
tors collected during the 1790 census. There are two
columns for free white males: one for those sixteen
and older and another for those younger than sixteen.
Males in the former group were eligible to join the
army. In this case, the census schedule was altered to
incorporate data collection beyond what was required
for apportionment calculations.

This practice of adding extra questions to the cen-
sus continued throughout much of U.S. history, cul-
minating in the “long form” of the census, sent to
a small percentage of households. (Everyone else re-
ceived the usual “short” census form.) In 2005, how-
ever, the American Community Survey (ACS) and its
Puerto Rican equivalent replaced the long form. These
surveys are administered using a rolling sample design,
allowing the U.S. Census Bureau to publish more cur-
rent data about the U.S. population. Now, every year,
roughly 3.5 million households are surveyed through
the ACS (Torrieri et al., 2014).

As shown in Figure 9, the first census in 1790
recorded around 3.9 million free and enslaved people
in the United States; the twenty-third census in 2010
counted more than 308 million (free) people (U.S. Of-
fice of the Secretary of State, 1793). At the time of the
first census, however, the government felt that the 3.9
million count seemed too low. They even suspected
that households pretended to have smaller families to
avoid the taxes associated with paying for the recent
war (Wright and Hunt, 1900).

While it was eventually decided that it was the
colonial-era population estimates which were too high
instead of the census count being too low, this high-
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FIG. 9. Resident population of the U.S. based on the decennial
census starting in 1790 and the Population Estimates Program for
the recent, intercensal years, 2011–2018. The 1790 census counted
people from the 13 states and the territorial areas which eventu-
ally became states. (Sources: Decennial census of population and
housing; U.S. Census Bureau, 2017a).

lights an important point. The primary purpose of
the census was (and still is) for apportionment. How-
ever, at that time, people worried that a secondary
purpose—a repurposing—dampened the final counts.
If that had happened, then an auxiliary objective would
have degraded the constitutionally mandated one. Con-
sequently, it is possible for repurposing to be damaging
to the original goal.

4.2 Data Confidentiality.

During the 2010 census, the U.S. Census Bureau
launched a $133 million campaign to encourage the
public to complete their census forms. Reasons for
failing to respond ranged from apathy to hostility to-
ward government data collection (U.S. Census Bureau,
2010). The latter has always been a concern.

Charles Pidgin, Chief Clerk of the Massachusetts
Bureau of the Statistics of Labor, wrote in 1888, “The
American citizen is jealous of his individual rights and
opposed, on principle, to inquisitorial inquiries by the
government. He is not so much opposed to giving in-
formation of a private nature, but he is very solici-
tous as regards the use to be made of the informa-
tion. He will give a statistical office individual facts
but he wishes, naturally, to be ‘covered up’ in the print
(Pidgin, 1888, p. 3).” He goes on to recommend that
the questionnaire schedules themselves should explain
the legal basis for collecting data. (U.S. Census Bureau
forms do include such explanations.)

Pidgin address two issues here. First, published data
should not reveal any individual’s information. The
U.S. Census Bureau handles this problem using dis-
closure avoidance techniques: data swapping, synthetic
data, top-coding and so forth (Lauger, Wisniewski and
McKenna, 2014).

Pidgin hints at the second issue when speaking about
the use of that information. Governments are made up
of many agencies and departments and bureaus. Not
only does the public want to be assured that their per-
sonal information will not be printed, but they also do
not want it used against them by the government.

The only way to formally ensure this is through the
law. The U.S. Census Bureau uses Title 13 and Title 26
of the United States Code to protect respondent confi-
dentiality. Title 13 makes it a federal crime to disclose
individual (or business) information to the public and
to other government agencies or courts (U.S. Census
Bureau, 2017g). Title 26 is more specific and covers
the use of Internal Revenue Service (IRS) data (i.e.,
tax information) by the U.S. Census Bureau to produce
official statistics (U.S. Census Bureau, 2017h). Again,
strict privacy protections are in place.

Terrible things can happen when confidentiality is
violated. For example, it has been shown that census
records were used to identify and intern Japanese res-
idents (many of them U.S. citizens) during World War
II. This could occur because privacy protections were
temporarily suspended by then-President Franklin D.
Roosevelt, and only reinstated after the war (Anderson,
2015).

Privacy and confidentiality are becoming increas-
ingly important as it becomes easier to collect data
about a person’s daily activities through cell phones,
internet activity, cameras, etc. This data is then sold
and disparate data sets are connected, allowing a busi-
ness (or a government) to track a person across multi-
ple devices through time and space (another statistical
idea pops up here: record linkage). Relying on organi-
zations to self-regulate with regards to privacy may be
too much to ask; the law may be the only way forward.
Europe, for example, has taken the lead with rules on
the “right to be forgotten” and the General Data Pro-
tection Regulation (GDPR).

4.3 Nonrandom Samples.

Much of “big data” is opportunistic in that it is col-
lected, for example, as a byproduct of doing business
(e.g., scanner data, Google searches, Uber trips, Netflix
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shows watched). Groves (2011) offers a useful term for
this type of data: “organic data.”

The upside of organic data is that there is a lot of it.
One downside is that it is very messy. This contributes
to another critical disadvantage: it is often unclear what
part of the population the data represents. These are not
random samples nor are they censuses, rendering tradi-
tional statistical techniques for inference ineffectual.

That said, statistical thinking can still provide guid-
ance. For instance, the difference between the sample
and population mean is a product of data quality, data
quantity, and problem difficulty (i.e., standard devia-
tion) (Meng, 2018). The data quality element is the
component that, in part, allows one to understand the
representativeness of the sample.

Official statistics offer an accepted use of a nonran-
dom sample: house price indices. These indices are in-
tended to measure the state of the housing market. As
Brown (2015) in his comment to Pfeffermann’s (2015)
Morris Hansen Lecture observes, house price indices
are most commonly constructed using sale prices. In
any given time period (e.g., month, quarter) only a
small fraction of homes in a region are sold. An exam-
ple in Nagaraja (2019) shows that for roughly 733,600
single-family homes in the San Diego metropolitan
area, only 2.8% were sold in 2011. Therefore, any price
index based on sale prices utilizes a very small, non-
random subset of all single-family homes (excluding
apartments, rental properties, mobile homes, etc.).

The first house price indices were hedonic indices
that regressed price against housing characteristics
(i.e., hedonics) such as the number of bedrooms, bath-
rooms, lot size and so forth (Nagaraja and Brown,
2013, Nagaraja, Brown and Wachter, 2014). This type
of index was eventually rejected as hedonic variables
were difficult to collect consistently over long periods
of time and across large geographic areas. (Perhaps
they may return in the current, web-scraping age.)

Bailey, Muth and Nourse (1963) proposed the re-
peat sales index as a replacement for the hedonic index.
Their idea was that the difference in price between two
sales of the same house could be used to construct an
index. (“Two sales of the same house” was shortened
to “repeat sales.”) Using repeat sales would sidestep the
issue of hedonics because, in theory, the same house—
with the same hedonic characteristics—would be com-
pared.

Using the notation from Nagaraja and Brown (2013),
the Bailey, Muth and Nourse (1963) model can be ex-
pressed as follows:

yit ′ − yit = βt ′ − βt + uitt ′,(15)

where yit is the log sale price of house i at time t , βt is
the log price index at time t , uitt ′ is the Gaussian error
term, and t ′ > t . The resulting β̂t values are converted
to a price index with t = 1 being the base period: 1,
eβ̂2−β̂1 , eβ̂3−β̂1 , . . ., eβ̂T −β̂1 .

More than two decades later, the model in (15) resur-
faced in Case and Shiller (1987, 1989) with an addi-
tional component. Case and Shiller (1987, 1989) ar-
gued that the gap time between sales of the same house
was important. Specifically, the wider the gap (e.g., 10
years between sales vs. 5 years between sales), the less
valuable the older sale price. This information was in-
corporated into (15) by introducing a heteroscedastic
error term. A modified weighted-least squares method
was used to fit the model where wider gap times re-
sulted in lower observation weights (Nagaraja, Brown
and Wachter, 2014).

This repeat sales model became very popular and is
used in two prominent indices today: the S&P CoreL-
ogic Case–Shiller Home Price Indices and the Federal
Housing and Finance Agency (FHFA) House Price In-
dex. The weights used in the FHFA index vary slightly
from the Case and Shiller (1987, 1989) method and the
index incorporates an adjustment for the depreciating
effect of age on a house. Both indices make adjust-
ments for seasonal effects (Calhoun, 1996).

Figure 10(b) shows an example of the quarterly and
seasonally adjusted FHFA index for five Ohio Core
Based Statistical Areas (metropolitan/micropolitan ar-
eas): Akron, Cincinnati, Cleveland-Elyra, Columbus
and Dayton. All five indices have the same base, the
first quarter (Q1) of 1991. We can see that prices
in Dayton rose more slowly than the other four re-
gions, which had comparable growths. Prices fell in all
five regions after the 2007 housing bubble burst (see
the vertical line). After that point, the indices diverge
with the capital, Columbus, having the fastest relative
change in prices and Dayton remaining as the area with
the slowest relative change in prices.

A repeat sales index is a reasonable solution to a
problem of limited data. However, there are a few is-
sues, even though they have been adopted for wide-
spread use. Primarily, the limited data issue is wors-
ened with repeat sales methods as all homes which sold
only once in the sample period are discarded.

For example, in a study of 20 U.S. cities with sales
covering a nearly 20-year period, between 53% and
79% of homes in the sample period were only sold
once (Nagaraja, Brown and Zhao, 2011). Those homes
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FIG. 10. Graph (a) is a map of the state of Ohio demarcated by Core Based Statistical Areas (CBSAs) with major cities marked (Columbus
is the state capital). Some CBSAs, like Cincinnati, cross state boundaries. Graph (b) shows the Federal Housing and Finance Agency House
Price Indices for these CBSAs. The base year is the first quarter in 1991 where the index is 100; the repeat sales index is quarterly and
has been seasonally adjusted. The burst of the housing bubble in 2007 is marked by the vertical dotted line. (Sources: Federal Housing and
Finance Agency and Geography Division, U.S. Census Bureau (U.S. Census Bureau, 2009, Federal Housing and Finance Agency, 2019)).

would not appear in the index until they had been sold a
second time. Among those single sales, some would be
new home sales. That means, in theory, two cities could
have the same house price index even though one was
growing far more rapidly and constructing new homes
at a feverish pace. A second issue is that there is some
evidence that homes sold many times may be cheaper
than those sold less frequently, further biasing the sam-
ple (Nagaraja, Brown and Wachter, 2014).

To address these issues, an alternate, hybrid index
was proposed in Nagaraja, Brown and Zhao (2011).
This index has the benefit of being able to incorporate
both single and repeat sales; furthermore, the effect of
gap times are included through the use of a decaying
autoregressive parameter and in the variance of the er-
ror term.

To borrow notation from Nagaraja, Brown and Zhao
(2011), let 1, . . . , T denote the (discrete) time periods
(e.g., months, quarters, years) in the sample period.
Further, let yi,1,z, yi,2,z, . . . , yi,j,z, . . . be the log sale
price of the j th sale of the ith house in area z (e.g.,
ZIP code, census tract) within the sample period. Then
let γ (i, j, z) = t (i, j, z) − t (i, j − 1, z) denote the gap
time between two consecutive sales where t (i, j, z) is
the time period when the j th sale of the ith house in
area z occurred.

Then the autoregressive model for log price is

yi,1,z = μ + βt(i,1,z) + τz + εi,1,z, (i.e.j = 1);
yi,j,z = μ + βt(i,j,z) + τz

+ φγ (i,j,z)(yi,j−1,z − μ − βt(i,j−1,z) − τz)

+ εi,j,z, j > 1

subject to
T∑

t=1

ntβt = 0,

(16)

where μ is a constant, nt is the number of sale at
time t , μ is the overall average log price, βt(i,j,z) are
the fixed effects for time period, φ is the autoregres-

sive coefficient where |φ| < 1, τz
iid∼ N (0, σ 2

τ ) is a ran-

dom effect, εi,1,z ∼ N (0,
σ 2

ε

1−φ2 ), and for j > 1, εi,j,z ∼
N (0,

σ 2
ε (1−φ2γ (i,j,z))

1−φ2 ) with independent εi,j,z terms. The

fitted β̂t are then converted to an index using the same
method as with the Bailey, Muth and Nourse (1963)
index.

The first equation in (16) handles single sales and
the second harnesses the extra information contained in
having repeated sales. However, while the autoregres-
sive index uses more of the sale data, it still is not con-
structed from a random sample of all homes. Nonethe-
less, these types of house price indices are an accepted
way of describing the state of the housing market.
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5. SUMMARY.

There are countless links between statistics and data
science. The cases in this paper try to highlight the use
of statistical thinking to address a few of these cur-
rent debates in data science. Moreover, these exam-
ples emphasize the need to understand the nature of the
data and its connection to the population along with a
need to interpret the fitted model. These are two ideas
that underpin much of statistical thinking and much of
Lawrence D. Brown’s work.
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