"Mind Reading": Decode Visual Images from Brain Activities

Data Science Live – STAT 571/701 Shaolong Wu, Yuzhou Lin, Lingqi Zhang

Members

Shaolong Wu

- Hometown: Nanjing, China
- School: Wharton, Engineering
- **Program:** BS in Economics, MSE in Electrical Engineering
- Research Interests: Econometrics

Yuzhou Lin

- Hometown: Sichuan, China
- School: College, Engineering
- **Program:** BA in Mathematics, MSE in Data Science
- Research Interests:
- Biostatistics, Data Science

Lingqi Zhang

- Hometown: Zhejiang, China
- School: Arts and Sciences
- **Program:** PhD in Psychology
- **Research Interests:** Visual System, Computational Neuroscience

Introduction

• Understanding the brain is one of the most important and challenging problem

 \sim 100 billion neurons \sim trillions of connections (synapses)

- External stimulus Brain activities
- Visual cortex

Introduction

> 8000 voxel,1750 images for training, 100 images for testing

Visual system is *Hierarchical*

Herzog & Clarke, 2014

PROPORTIONS OF TOTAL VOXELS FOR 7 BRAIN REGIONS

Correlation Coefficients of Voxel Variables

Correlation Power

correlation coefficients of variables

Analysis – Decoding

Logistic Regression (Family: Binomial),

Formula: Classes ~ Voxels

Classes of the Image:

1. Animal

2. Not Animal

Classification Methods

- 1. PCA + Logistic
- 2. PCA + Logistic + ANOVA
- 3. LASSO Logistic
- 4. LASSO Logistic + ANOVA

Classification Methods

Training Accuracy Testing Accuracy

4.	LASSO Logistic + ANOVA	0.855	0.675
3.	LASSO Logistic	0.883	0.65
2.	PCA + Logistic + ANOVA	0.692	0.517
1.	PCA + Logistic	0.69	0.483

Final Model: LASSO LR (highest training accuracy, almost highest testing accuracy, highest AUC)

Ranking of regions in affecting prediction accuracy (7-most important; 1-least important)

Order	Region	
7	ІТ	
6	V3	
5	V4	edges
4	V3A	
3	V3B	shanes
2	V2	faces and objects
1	V1	

Finding: The most important regions for classification are the **higher cortical regions** of visual systems.

Analysis – Convolution Neural Network

https://ysjournal.com/medical-image-translation-using-convolutional-neural-networks/

Analysis – Issue with Overfitting

CIFAR 10

Analysis – Convolution Neural Network Encoding

Analysis – Convolution Neural Network Decoding?

100 images (test set)

Analysis – Convolution Neural Network Decoding?

100 images (test set)

Analysis – Convolution Neural Network Decoding?

100 images

Summary

Key Findings & Future Directions				
Key Findings	 A simple LASSO regression is able to read-out categorical information about the visual input from higher visual cortical activities A pre-trained (on object recognition) convolution neural network can be a pretty good model of brain responses to images The network can be used to "decode" visual image from brain activities 			
Future Directions	 More advanced decoding methods (i.e., non-linear regression, Bayesian hierarchical models) Larger network with higher resolution input Our current model is only predictable of lower cortical area; extend to higher cortical area 			

Thank you for your listening!

GitHub: https://github.com/lingqiz/STAT-571-DataMining/tree/main/Project