EVolve

Predicting Electric Vehicle Adoption

LESS SMOKE, LESS NOISE

- Transportation is the largest contributing sector to greenhouse gas emissions in the U.S.
- Adverse environmental and health impacts as a result of vehicle emissions
- Decarbonize the transportation industry through electric vehicles

EV usage is growing, but there are still barriers in widespread adoption.

- Barriers include: charging infrastructure, affordability, and EV performance
- Disproportionately affect certain individuals based on socioeconomic and background factors
- Need targeted efforts to enhance EV usage

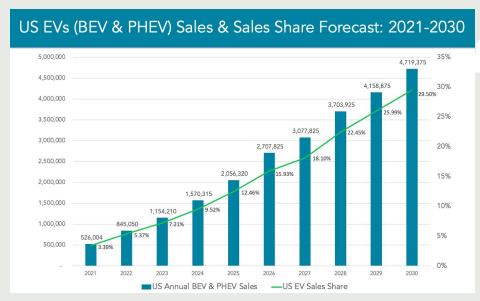


Figure 1: US EV sales forecast from 2021- 2030 (source: evadoption).

Research questions

Does individual socioeconomic status and prior exposure relate to likelihoods of considering EVs?

What targeted recommendations can we provide to policymakers to enhance EV usage?

Data description

0 0	Data source	Independent variables	Dependent variable
	Online questionnaire of residents' attitudes toward zero-emission vehicles (ZEVs)	Socioeconomics: age, gender, education, income, state Household: electricity usage, home parking, charging Perceptions of EVs: price, charging, safety, reliability, environmental/health benefits Prior exposure: EV driving experience, technical interest, familiarity	Binary variable denoting whether the individual will/has adopted (1) or not adopted (0) an electric vehicle

Prior exposure, environmental outcomes, and EV characteristics are related to EV adoption.

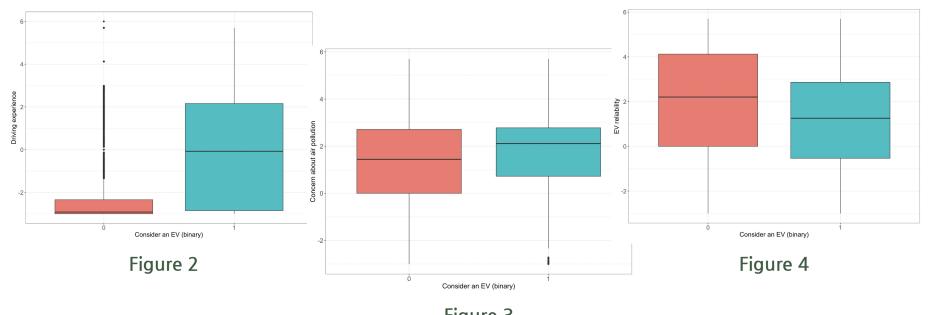


Figure 3

Box plots of not adopting (red) and adopting (blue) electric vehicles by driving experience (Figure 2), worry about air pollution (Figure 3), and EV vs. gasoline-powered vehicle reliability (Figure 4).

Individuals who have seen more EVSEs in public were more likely to adopt an EV.

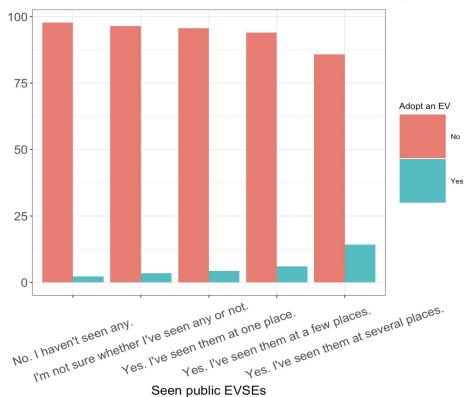


Figure 6: Percentage of individuals having seen public EVSEs (i.e. charging stations) to different degrees in either not adopting (red) or adopting (blue) an electric vehicle.

There is significant variation in EV adoption by education level.

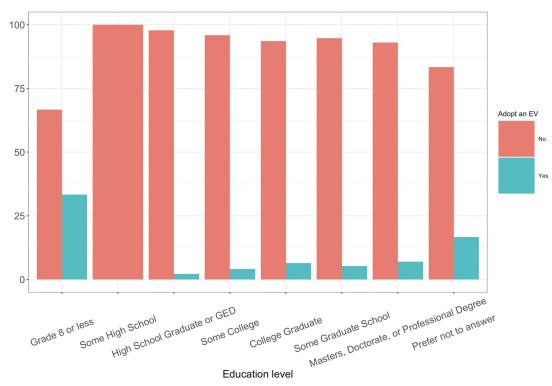


Figure 5: Percentage of individuals in each education level either not adopting (red) or adopting (blue) an electric vehicle

Proposed methods

Logistic regression and LASSO

Simple binary model and feature selection

Random forests

Ensembling method for classification decision trees

Boosting

Adaboost and XGBoost to improve performance

Neural networks

More complex parametric structure for classification

Class imbalance with initial models

Distribution of Response Variable

Will not consider EV (0)	Will consider EV (1)	
4954 (~94%)	294 (~6%)	

- False negatives much more costly than false positives
- Models built on the original dataset rarely identify people actually willing to consider EVs
- Solution: oversample observations in the minority class to increase its proportion

LASSO Confusion Matrix - Testing Data

	True 0	True 1
Predicted 0	990	51
Predicted 1	5	4


RF Confusion Matrix - Testing Data

	True 0	True 1
Predicted 0	994	54
Predicted 1	1	1

LASSO (after oversampling)

Important Variables Identified

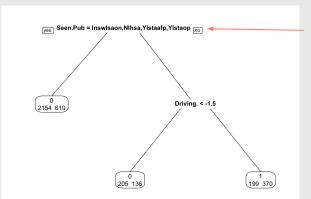
- Air pollution/Environmental factors
- Characteristics of EVs
- Demographics of respondent
- Seeing EVSEs in public highly significant

Important Observations

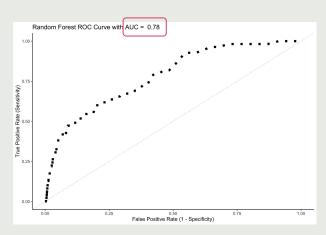
- Reduced the number of features from 66 to 39
- Identifies over two-thirds of the people willing to consider EVs

LASSO Confusion Matrix - Testing Data

	True 0	True 1	
Predicted 0	763	18	
Predicted 1	232	37	TPR 0.6


- Far more false positives now
- Availability of charging stations is not significant at the 0.05 level

Tree-based Methods


RF Confusion Matrix - Testing Data

	True 0	True 1
Predicted 0	838	25
Predicted 1	157	30

TPR = 0.545

A tree built on the entire dataset splits on the 'Seen EVSEs in public' variable first

Important Observations

- RF's AUC is slightly higher than LASSO
- Less interpretable
- 'Seen EVSEs in public' (i.e. charging stations) reduces deviance the most!

Summary of results

Final model: LASSO logistic regression with oversampling.

LASSO has one of the highest AUCs and preserves feature interpretability (compared to all other methods).

Prior exposure to EVs is a strong indicator of EV adoption.

Individuals who have seen charging stations and had driving experience with EVs were significantly more likely to adopt an EV.

EV characteristics and demographics are key factors in EV adoption.

Negative perceptions of EV safety and reliability and lower education levels contribute to a lower likelihood of EV adoption.

Policy recommendations

Enhance EV charging infrastructure.

Public charging stations contribute to positive perceptions of EVs and greater adoption.

Promote information on EV usage.

Address the gaps in prior exposure to EVs and enhance public perceptions of EVs.

Targeted efforts for less educated populations.

Strategically target efforts to encourage more EV usage among less educated populations.

THANKS!

We are open to any questions and suggestions!

