

The Recurring American Dream? Understanding the Effect of Remote Work on Suburban Housing Prices

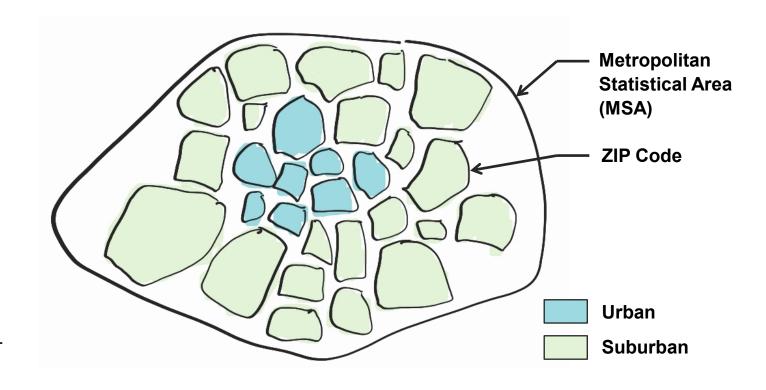
Data Science Live 2023

Yining Lei & Tiffany M. Tran
Department of City and Regional Planning
University of Pennsylvania
Dr. Linda Zhao

April 2023

Is work from home—induced by a COVID-19 policy shock—associated with a revival of American suburbanization?

Research Design: Housing Prices Across Space and Time

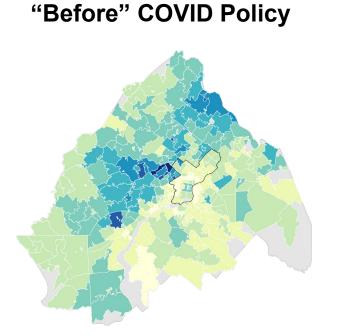

Unit of Analysis: ZIP Code

Dependent Variable

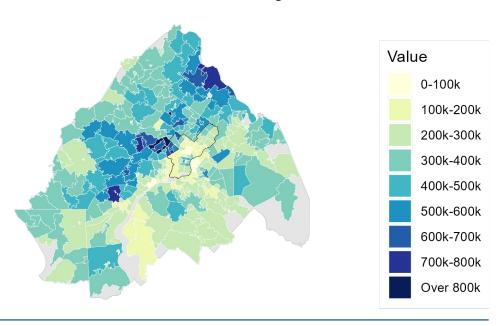
Log Median Home Value

Predictors

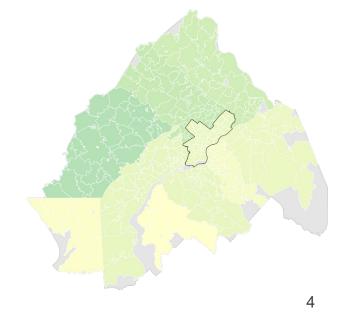
- Percent WFH
- State
- Urban or Suburban
- Percent Age 65 or Older
- Percent White
- Percent College Education or Higher
- Log Median Household Income

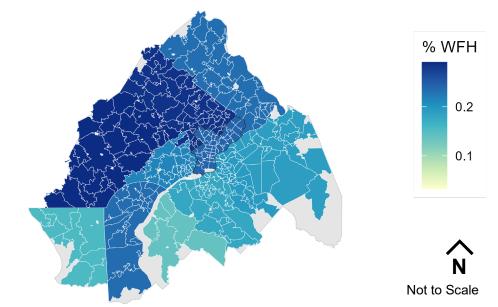


Earliest: 3/22/2020 (varies by state)


Latest: 6/9/2020 (varies by state)

EDA: Philadelphia MSA


Median Home Value for Single Family Home



"After" COVID Policy

Percent Population Working from Home

Dataset: ACS, Zillow, & COVID Policy Intervention

Variables		Before		After		
Dependent Variable (DV)	housing price	average monthly median home value Zillow Home Value Index SFR, 2018-2022	ZIP	average monthly median home value Zillow Home Value Index SFR, 2018-2022	ZIP	
	age	average % aged 65 and above ACS 1-Year Estimates DP05, 2018 - 2019	county V ZIP	% aged 65 and above ACS 1-Year Estimates DP05, 2021	county V ZIP	
	race	average % white ACS 1-Year Estimates DP05, 2018 - 2019	county V ZIP	% white ACS 1-Year Estimates DP05, 2021	county V ZIP	
	education	average % bachelors and above ACS 1-Year Estimates S1501, 2018 - 2019	county V ZIP	% bachelors and above ACS 1-Year Estimates S1501, 2021	county V ZIP	
Independent Variables (IVs)	income	average median household income ACS 1-Year Estimates S1901, 2018 - 2019	county V ZIP	median household income ACS 1-Year Estimates S1901, 2021	county V ZIP	
	WFH	average % work from home ACS 1-Year Estimates DP03, 2018 - 2019	county V ZIP	average % work from home ACS 1-Year Estimates DP03, 2021	county V ZIP	
	state	DE, GA, MD, NJ, PA				
	urban / suburban	1: ZIP codes within city limits of Atlanta / Philadelphia 0: other ZIP codes				

Methods: OLS, LASSO, & Single Tree Regression

Methods **Before** After All IVs included plus interaction All IVs included plus interaction logAveValueBefore ~ logAveValueAfter ~ State + SeniorBefore + SeniorAfter OLS + WhiteBefore + WhiteAfter + HigherEduBefore + HigherEduAfter + WFHAfter + WFHBefore + Urban + Urban Statistical / + logMedHHIncBefore + logMedHHIncAfter + WFHBefore*Urban + WFHAfter*Urban Theory-Force-in LASSO shows all IVs important Force-in LASSO shows only 4 IVs important Based logAveValueBefore ~ logAveValueAfter ~ State State + SeniorBefore Force-in + WhiteBefore **LASSO** Same + HigherEduBefore **Parsimonious** model + WFHBefore + WFHAfter model + Urban + Urban + logMedHHIncBefore + logMedHHIncAfter + WFHBefore*Urban 3 IVs of interest 3 Different IVs of interest Machine Learning / WhiteBefore logAveValueBefore logAveValueAfter logMedHHIncAfter **Single Tree** HigherEduBefore State can be predicted by can be predicted by Non-TheorylogMedHHIncBefore WFHAfter Based

Results: Model Comparison

Meth	ods	Before	After	
Statistical / Theory- Based	OLS	MSE = 28.44	MSE = 21.86	
	Force-in LASSO	MSE = 28.44	MSE = 22.22	
Machine Learning / Non-Theory- Based	Single Tree	MSE = 28.68	MSE = 23.08	

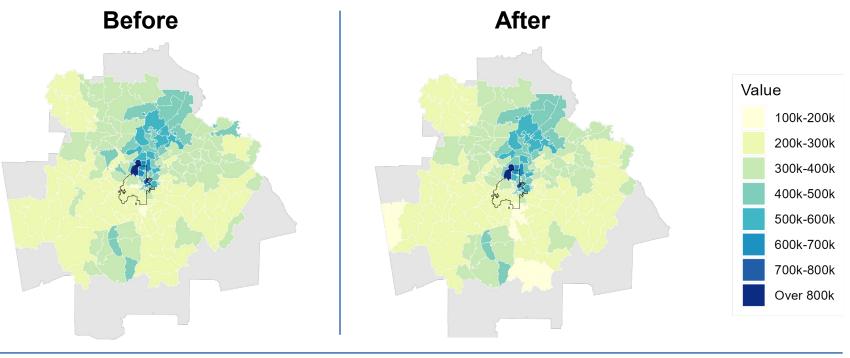
Discussion

Key Findings

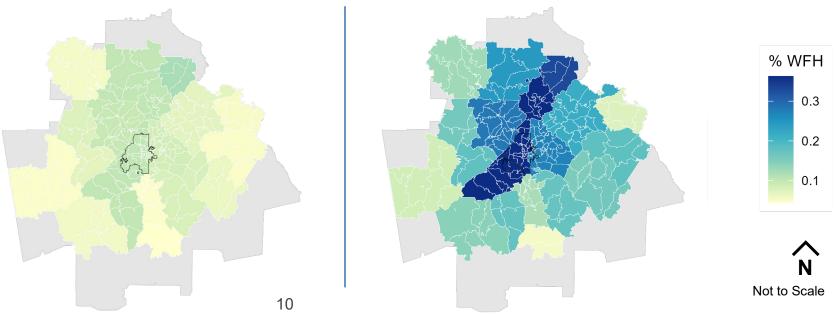
- WFH after the COVID policy shock is associated with an increase in average home values in suburban areas
- WFH is not statistically significant in the "after" period, but theory and practice indicates a trend toward WFH and suburban housing prices
- WFH demographics shifted in the "after" period and became colinear with college education
- WFH impacted housing prices differently depending on state
- OLS performed best on both "before" and "after" models

Limitations

- Housing markets take time to reflect macro level shocks, so analysis was limited by time
- "After" period only includes 2021, so does not reflect housing demand in 2022
- Different data granularity limits the analysis
 - Monthly, ZIP code level housing price data
 - Annual, county level WFH data and demographics
 - State level COVID policy intervention data


Research Directions

- Study contributes a pre and post (non-causal) approach to future data analytics on remote work and other trends associated with policy interventions
- Future research could include more MSAs for larger sample
- Future research on housing prices could include more granular data on WFH
- Need to watch future trends in suburban housing prices


Appendix

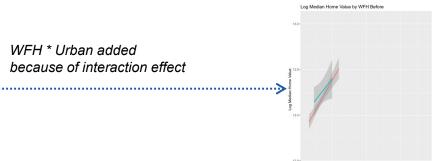
EDA: Atlanta MSA

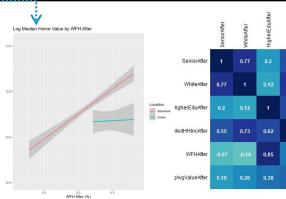
Median Home Value for Single Family Home

Percent Population Working from Home

Results: OLS Regression

Findings


- State of NJ and median household income are statistically significant both "before" and "after"
- Before, log median home values decreased by 18.1 percentage points in urban areas compared to 8.7 in suburban areas
- After, log median home values decreased by 1.5 percentage points in urban areas and increased by 0.1 percentage points in suburban areas
- After, more work from home was still associated with lower home values in urban areas (though less so), but became associated with higher home values in suburban areas
- After, WFH and Urban interaction is not statistically significant, but both "before" and "after" models passed the F-test


Before

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-6.561	4.605	-1.42	0.15491	
StateGA	0.276	0.159	1.73	0.08398	
StateMD	-0.102	0.169	-0.61	0.54401	
StateNJ	-0.499	0.113	-4.42	1.20E-05	***
StatePA	-0.136	0.111	-1.22	0.2236	
SeniorBefore	2.142	1.806	1.19	0.23629	
WhiteBefore	-0.105	0.337	-0.31	0.75539	
HigherEduBefore	0.973	0.525	1.85	0.06443	
WFHBefore	-8.663	4.272	-2.03	0.04311	*
Urban1	0.917	0.334	2.75	0.00626	**
logMedHHIncBefore	1.67	0.433	3.85	0.00013	***
WFHBefore:Urban1	-9.454	3.776	-2.5	0.01262	*

After

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	-1.8295	2.6596	-0.69	0.49184		
StateGA	0.06	0.1007	0.6	0.55159		
StateMD	0.0622	0.1415	0.44	0.66059		
StateNJ	-0.3709	0.1026	-3.62	3.30E-04	***	
StatePA	-0.0601	0.0907	-0.66	0.50786		
SeniorAfter	2.0616	1.5438	1.34	0.18237		
WhiteAfter	-0.3126	0.25	-1.25	0.21167		
HigherEduAfter is dropped due to high collinearity with WFHAfter.						
WFHAfter	0.0559	0.6082	0.09	0.92677		
Urban1	0.5311	0.3596	1.48	0.14028		
logMedHHIncAfter	1.2721	0.2587	4.92	1.20E-06	***	
WFHAfter:Urban1	-1.5432	1.1531	-1.34	0.18141		
		-		<u> </u>		

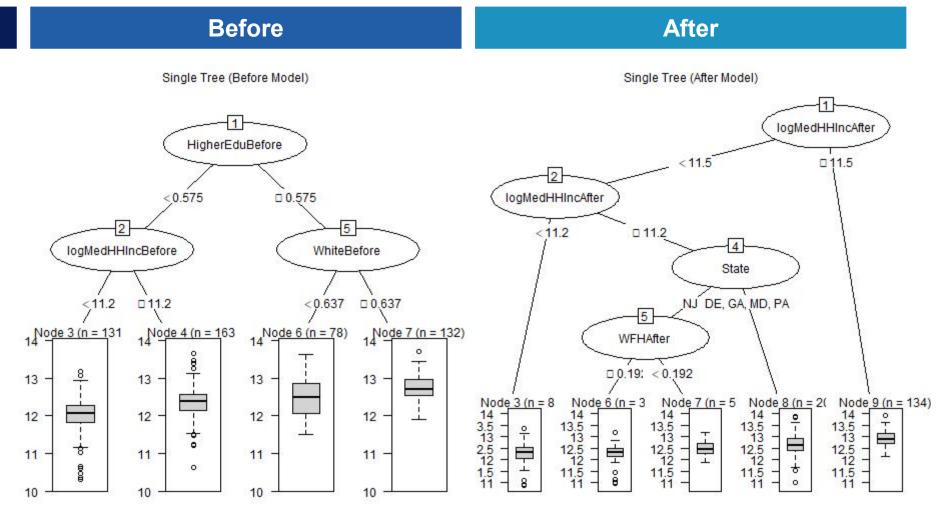
Results: LASSO Regression

Findings

- "Before" LASSO model is identical to the "Before" OLS model, meaning that all IVs are considered important
- "After" LASSO model reduced the number of IVs to four: state, WFH, urban, and household income
- WFH was included in both models

Before

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-6.561	4.605	-1.42	0.15491	
StateGA	0.276	0.159	1.73	0.08398	
StateMD	-0.102	0.169	-0.61	0.54401	
StateNJ	-0.499	0.113	-4.42	1.20E-05	**:
StatePA	-0.136	0.111	-1.22	0.2236	
SeniorBefore	2.142	1.806	1.19	0.23629	
WhiteBefore	-0.105	0.337	-0.31	0.75539	
HigherEduBefore	0.973	0.525	1.85	0.06443	
WFHBefore	-8.663	4.272	-2.03	0.04311	*
Urban1	0.917	0.334	2.75	0.00626	**
logMedHHIncBefore	1.67	0.433	3.85	0.00013	**:
WFHBefore:Urban1	-9.454	3.776	-2.5	0.01262	*


After

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.9241	1.5118	0.61	0.5413	
StateGA	0.025	0.0838	0.3	0.76583	
StateMD	0.0132	0.1382	0.1	0.9242	
StateNJ	-0.337	0.0957	-3.52	0.00047	***
StatePA	-0.0145	0.0865	-0.17	0.86661	
WFHAfter	0.2977	0.4352	0.68	0.49428	
Urban1	0.0398	0.0793	0.5	0.61549	
logMedHHIncAfter	1.0341	0.141	7.34	9.10E-13	***

Results: Single Tree Regression

Findings

- Before, housing prices explained by college education, household income, and white population
- After, housing prices associated with household income, state, and WFH

Remote Work and the Future of Cities

Policy Implications

- Metropolitan areas are likely to expand beyond existing boundaries
- Car reliance is likely to increase
- Urban areas are likely to lose population density
- Housing prices are likely to increase in both urban and suburban areas
- People are likely to move to the suburbs of affordable cities

Policy Recommendations

- Manage urban expansion with growth controls and regional planning
- Strengthen transit to and within suburban areas
- Attract retail and entertainment industries to urban areas to increase population density
- Build more housing in urban areas to increase housing affordability