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Data Acquisition & EDA

The Importance of Predicting Soccer Player’s Performance

Huge impacts on scouting, trajectory of a team, and forecasting

Winning/ Losing comes down to
the performance of individual

players
Forecasting Player’s Potential
The Coaches ®&——Coaches are able to make more
informed decisions on team selection
Audience Members

Sports Betting
Allows spectators to win bigger and
make more accurate predictions
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Motivation Data Acquisition & EDA

Initial Findings

Scree Plot of PVE for players_cleaned Clustering over PCT and PC2
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LASSO Regression Trees Neural Networks

LASSO Regression

Finding Important Predictors

Call:

Im(formula = overall ~ value_eur + wage_eur + age + height_cm +
weight_kg + club_team_id + league_level + nationality_id +
preferred_foot + weak_foot + skill_moves + international_reputation +
work_rate + release_clause_eur + pace + passing + dribbling +
physic + attacking_crossing + attacking_finishing + attacking_heading_accuracy +
attacking_short_passing + attacking_volleys + skill_dribbling +
skill_curve + skill_fk_accuracy + skill_long_passing + movement_acceleration +
movement_sprint_speed + movement_agility + movement_reactions +
movement_balance + power_shot_power + power_jumping + power_stamina +
power_strength + power_long_shots + mentality_aggression +
mentality_interceptions + mentality_positioning + mentality_vision +
mentality_penalties + mentality_composure + defending_marking_awareness +
defending_standing_tackle + defending_sliding_tackle + goalkeeping_diving +

goalkeeping_handling + goalkeeping_kicking + goalkeeping_positioning +
Mean Squared goalkeeping_reflexes + 1s + lam + 1lcm + lwb + 1dm + gk +
Error: “Position:RW™ + “Position:ST ™ + “Position:CF" + “Position:LW™ +
“Position:CAM™ + “Position:CM™ + “Position:CDM" + “Position:LM™ +

0.0033155 “Position:CB* + “Position:RB™ + “Position:RM™ + “Position:LB" +

“Position:RWB™ + year_contract_length + PC1 + PC2 + PC3 +

Root Mean PC4 + PC5, data = train_datal[, c(1, selected_features + 1)])

Squared Error:
0.0.057581

Coefficients
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LASSO Regression Neural Networks

TreeS Random Forest

Single Tree, Bagged Tree, Random Forest Regression

Plot for ntree = 50 Plot for niree=250 Plot for ntree = 500
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Single Tree

Mean Squared
Error:
0.4.2920

Root Mean Squared
Error:
2.0717 0.3119

Testing Error: Testing Error:
13820 371.697

Mean Squared
Error:
0.09728

Root Mean Squared
Error:

Decision Tree for Player Rating

Single Tree
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LASSO Regression Trees Neural Networks

Keras Model
Optimizing the Model

Mean Squared Error:
0.008929

Root Mean Squared
Error:
0.094496

Key Stats

epochs = 40: loss and mean squared error
stabilize around 40.
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Reflection Improvements

ICompiIed RMSE

Success of Different Methods by RMSE

Results: Model RMSE Values

LASSO 0.057581
Single Tree 2.0717
Random Forest 0.283718
Bagging 0.3119
Neural Nets 0.094496

LASSO Single Tree Random Forest Bagging Neural Nets
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Reflection Improvements

|Future Goals
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